python学习之pandas

发布时间:2019-06-21 16:23:30编辑:auto阅读(2131)

    #Pandas
    '''
    1,Pandas是Python的一个数据分析报包,该工具为解决数据分析任务而创建。
    2,Pandas纳入大量库和标准数据模型,提供搞笑的操作数据集所需的工具
    3.pandas提供大量能使我们快速便捷地处理数据的1函数方法
    4,Pandas是字典形式,基于Numpy创建,让Numpy为中心的应用变得更加简单
    '''
    import pandas as pd
    import numpy as np
    #4 Pandas 数据结构
    #4.1Series

    s = pd.Series([1,2,3,np.nan,5,6])#索引在左边值在右边

    print(s)

    #4.2 Date Frame
    #DateFrame是表格型数据结构,包含一组有序的列,每列可以使不同的值类型。DateFrame有行索引和列索引,可以看成由Series组成的字典。

    dates = pd.date_range('20180310',periods = 6)

    df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['A','B','C','D'])

    print(df)

    print(df['B'])

    #创建特定数据的DataFrame

    df_1 = pd.DataFrame({

    'A':1.,

    'B':pd.date_range('20180923',periods=4),

    'D':np.array([2]*4,dtype='int32'),

    'E':pd.Categorical(['test','train','test','train']),

    'F':'foo'

    })

    #

    print(df_1)

    print(df_1.dtypes)

    print(df_1.index)#行的序号

    print(df_1.columns)#列的序号

    print(df_1.values)#把每个值进行打印

    print(df_1.describe())#数字总结

    print(df_1.T)#数字反转

    print(df_1.sort_index(axis=1,ascending=False))#axis等于按第一列排序,如ABCDEFG,然后ascending倒序进行显示

    print(df_1.sort_values(by='E'))#按值进行排列

    #pandas选择数据

    dates = pd.date_range('20180924',periods=6)

    df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['A','B','C','D'])

    print(df)

    print(df[0:3],df['20180910':'20180926'])#第一次切片选择,第二次按照筛选条件选择

    print(df.loc['20180924',['A','B']])#按照行标签进行选择

    print(df.iloc[3,1])#输出第三行第一列的数据

    print(df.iloc[3:5,0:2])#3,5行,0,3列

    print(df.iloc[[1,2,4],[0,2]])#不连续筛选

    print(df[df.A > 0])#筛选出df.A大于0的元素

    #pandas设置数据

    datas = pd.date_range('20180310',periods=6)

    df = pd.DataFrame(np.arange(24).reshape(6,4),index=datas,columns=['A','B','C','D'])

    print(df)

    df.iloc[2,2] = 999

    df.loc['2018-03-15','D'] = 999

    print(df)

    df[df.A > 0] = 999#A列大于0的为999???

    print(df)

    df['F'] = np.NAN

    print(df)

    df['E'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20180310',periods=6))#添加一列

    print(df)

    #7Pandas处理数据

    dates = pd.date_range('20180310',periods=6)

    df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])

    df.iloc[0,1]=np.nan

    df.iloc[1,2]=np.nan

    print(df)

    print(df.dropna(axis=0,how='any'))#0对行进行操作 1对列进行操作 any:只要存在NaN即可drop掉 all:必须全部是NaN才可drop

    print(df.fillna(value=0))#将NaN值替换为0

    print(pd.isnull(df))#是nan为true不是nan为false

    print(np.any(df.isnull()))#判断数据中是否存在nanz值

    #8 pandas的导入导出

    data = pd.read_csv('test1.csv')

    data.to_pickle('test.pickle')#将资料存取成pickle文件

    #9.pandas合并数据

    df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])

    df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])

    df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])

    #

    res = pd.concat([df1,df2,df3],axis=0,ignore_index=True)#0表示行合并,1表示列合并,ingnore_index重置序列index index变为1-8

    print(res)

    #join合并

    df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])

    df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'],index=[2,3,4])

    print(df1)

    print(df2)

    res = pd.concat([df1,df2],axis=1,join='outer')#行往外合并

    print(res)

    res = pd.concat([df1,df2],axis=1,join_axes=[df1.index])#以df1的序列进行合并,df2中没有的序列NAN值填充

    print(res)

    #append添加

    df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])

    df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])

    df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])

    s1 = pd.Series([1,2,3,4],index=['a','b','c','d'])

    res = df1.append(df2,ignore_index=True)#将df2合并到df1下面并重置index

    print(res)

    res = df1.append(s1,ignore_index=True)#将s1合并到df1下面并重置index

    print(res)

    #pandas和并merge

    #依据一组key合并

    left = pd.DataFrame({

    'key':['k1','k2','k3','k4'],

    'A':['A1','A2','A3','A4'],

    'B':['B1','B2','B3','B4']

    })

    #

    print(left)

    #

    right = pd.DataFrame({

    'key':['k1','k2','k3','k4'],

    'C':['C1','C2','C3','C4'],

    'D':['D1','D2','D3','D4']

    })

    #

    print(right)

    #

    res = pd.merge(left,right,on = 'key')

    print(res)

    #依据两组key合并

    left = pd.DataFrame({

    'key':['k0','k0','k1','k2'],

    'key2':['k0','k1','k0','k1'],

    'A':['A1','A2','A3','A4'],

    'B':['B1','B2','B3','B4']

    })

    #

    right = pd.DataFrame({

    'key':['k0','k1','k1','k2'],

    'key2':['k0','k0','k0','k0'],

    'C':['C1','C2','C3','C4'],

    'D':['D1','D2','D3','D4']

    })

    print(left)

    print(right)

    res = pd.merge(left,right,on=['key','key2'],how='inner')#how = outer left right

    print(res)

    #indicator合并

    df1 = pd.DataFrame({'col1':[0,1],'col_left':['a','b']})
    df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
    print(df1)
    print(df2)

    res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)#依据col1进行合并 并启用indicator = True输出没想合并式

    print(res)

    res = pd.merge(df1,df2,on='col1',how='outer',indicator='indicator_column')#自定义indicator column名称
    print(res)

关键字