发布时间:2019-08-29 07:40:33编辑:auto阅读(2105)
自定义卷积核,如3×3、5×5、7×7、9×9、11×11
Tip:卷积核需归一化。
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 25 14:35:33 2018
@author: Miracle
"""
import cv2
import numpy as np
#加载图像
image = cv2.imread('../data/lena.jpg')
#自定义卷积核
kernel_sharpen_1 = np.array([
[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
kernel_sharpen_2 = np.array([
[1,1,1],
[1,-7,1],
[1,1,1]])
kernel_sharpen_3 = np.array([
[-1,-1,-1,-1,-1],
[-1,2,2,2,-1],
[-1,2,8,2,-1],
[-1,2,2,2,-1],
[-1,-1,-1,-1,-1]])/8.0
#卷积
output_1 = cv2.filter2D(image,-1,kernel_sharpen_1)
output_2 = cv2.filter2D(image,-1,kernel_sharpen_2)
output_3 = cv2.filter2D(image,-1,kernel_sharpen_3)
#显示锐化效果
cv2.imshow('Original Image',image)
cv2.imshow('sharpen_1 Image',output_1)
cv2.imshow('sharpen_2 Image',output_2)
cv2.imshow('sharpen_3 Image',output_3)
#停顿
if cv2.waitKey(0) & 0xFF == 27:
cv2.destroyAllWindows()
上一篇: 一致性哈希概念与Python的简单实现
下一篇: Python 科学计算和绘图
49607
48819
39503
36566
30969
27794
26763
21581
21468
19825
520°
927°
866°
888°
1807°
988°
1668°
1890°
1494°
1458°